

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Introduction

Servo is a service management system for Authorised Apple Service Providers. It allows you to run your entire service business from within the same interface. Originally created in 2012 it is being used by service providers both large and small all around Europe.

Main features include:

	Flexible workflow management (create separate queues for different types of work, customize statuses and time limits per queue)

	Complete integration with GSX (do warranty and part lookups, create and edit repairs, stocking orders, part returns, etc)

	A rich set of communication tools (two-way email support, SMS sending, GSX escalations, attachment support)

	Inventory management (product categories, stocking per location, bracketed markup)

	Robust customer database (hierarchical customer data, custom fields)

	Fast Spotlight-style search

	Statistics and reporting

	Rule-based automation

	Dedicated check-in interface for customers and POS staff

	API for integration with external systems

	It’s not FileMaker Pro

The Obligatory Screenshots

[image: _images/order1.png]Servo Screenshot 1
[image: _images/devices.png]Servo Screenshot 2
[image: _images/inventory.png]Servo Screenshot 3

System Requirements

The application is written in Python on top of the excellent Django web framework [https://www.djangoproject.com] and depends on the latest stable versions of the following components for operation:

	PostgreSQL

	Memcache

	RabbitMQ

	uwsgi

Installation

Install and start PostgreSQL [https://www.postgresql.org], nginx [https://nginx.org], memcached [https://www.memcached.org], rabbitMQ (only necessary if you want to use automated rules).

Then clone the code:

$ git clone https://github.com/fpsw/Servo.git my_servo_folder
$ cd my_servo_folder
$ pip install -U -r requirements.pip

Next, run the installation script:

$./install.py

For testing, you can run Servo without any extra setup:

$ cd my_servo_folder
$ python ./manage.py runserver

If you want to run rules, set ENABLE_RULES = True and start the worker task and scheduler:

$ rq worker --with-scheduler &
$./manage.py scheduler

Then fire up your browser and got to http://localhost:8000/

Updating

First, back up your database:

$./manage.py backupdb

then:

$./manage.py selfupdate

After which you should restart your Servo instance. The method depends on how it’s deployed.

Documentation

End-user documentation for the system is available here [https://docs.servoapp.com]. A user-friendly list of changes is published here [https://docs.servoapp.com/changelog/].

FAQ

	Q: Why use Django?

	A: Because it works. Django also has the best documentation of any framework I’ve seen (especially coming from PHP and Zend Framework)

	Q: Why is Servo open-source?

	A: Because it’s a mission-critical application and open-sourcing it means that companies will always have access to it.

	Move CSV generation to streamingoutput?

New checkin

	Add buttons for lookups

	Highlight required fields

	Check that tabbing works OK in customer form

	Default checklist items to none, make mandatory

	Add warning icon if SN not valid Apple SN

	[OK] Add progress indication to new checkin

	[OK] Make password field mandatory

	[OK] Add warranty status to new checkin

	[OK] Password > Passcode for iPhones/iPads

	[OK] Make notify inline (hide for now)

	[OK] Default checkin/out location to current location

	[OK] Add condition text field, mandatory, append text to problem description.

	[OK] Move tags to top of problem description

	[OK] Hide terms checkbox from staff

	[OK] Show service order number on OK page

	[OK] For staff > go straight to printout

	[OK] Add accessories

	Add reseller (ask Apple/GSX)

	

	Add “device description contains” to repair stats

	

	Cleanup: customer dupes.

18.05.2015

	Add SMS checkbox to customer?

	Check Mail-in repair creation API

	Add GSX repair confirmation variable to templates

	CLC PDF form autofill

	Add GSX repair “import” (by entering confirmation number)

	Should have a way to update part prices in the background
– Add price_updated_at field

Admin:

	users&groups: active/inactive

	

	Remove hidden users from stats

	Default checkin accessories to None and make it required (maybe select None or something (requred))

	Checkin should have login
– Create case
– See their history
– See ongoing cases
– Show everything you would show on paper
– See status
– Print dispatch form
– Customer number instead of email
– Generate URL for operator
– Should also be able to create cases without logging

– Add delivery methods without notifications
– Klarna support for payments

– Make welcome and title texts in checkin editable, on every page.

19.04.2014

	A way to manually update part confirmations and return orders

13.04.2014

	returns > add “Verify shipment” to check that selected parts are kosher (not returned, have ret numbers etc…)

	Checkin -> add delivery method + notifications for certain methods (courier, UPS,…)

29.11.13

	add “recent searches” to toolbar (check Twitter)

	Add stats per device type

	Put all accounts under servoapp.com

	Add country field to locations?

	Check consumer law support

	Add news feed feature

Random notes

ALTER SEQUENCE servo_order_id_seq RESTART WITH 12345

19.09.13

	Fix part DOA

	Improve note template caching

TODO:

	Add command to download Servo/GSX repair in “GSX-format”

	Allow closing repairs that have been deleted from GSX

	Should somehow change request.session[’gsx_account’] when setting new default GSX act?

	Can product A be dispatched from location B if it was ordered from location C?

	checkmail.py should support more than one API user…

	Check why Replacement parts are added as modules

	Slow GSX requests seem to lock up the app…

	[feature] Update part details from GSX (kinda like with devices)

	[feature] Add received_at to Device. Stamped when a device arrives at a given location.

	[bug] Cannot mix different payment methods

	[feature] Implement API (https://bitbucket.org/jespern/django-piston/wiki/Home, http://oauth.net)

	Update products list from MacTracker

	Store replacement devices as a device. Link to old device and customer. Once we know the SN of the replacement.

	Move all static files to web server

	Test restarting the server

	Add order codes to notifications list

	checkmail missed this one: https://servo.mcare.fi/notes/unread/2113/view/

	Printouts don’t support folding very well

	Data detectors for notes and labels! (if email do this, if old system ID do that, if tracking ID do that…)

	Add link back to order to devices, products, custumers

	Some SN barcodes don’t work

	Need some kind of manual

	Parts/receive - add text field for repair confirmations, show only matching results on submit

	[feature] Add Create Escalation to /notes

	[feature] Add device info into sidebar of orders/edit_product

	[bug] Repair total in gsx form sidebar is incorrect

	[bug] Add “More..” link to notification popup in navbar

	[feature] Keyboard shortcuts for main areas of system and search field focus

	[bug] Report invalid serial number searches in a nicer fashion:
File “/data/servo/lib/python2.7/site-packages/django/core/handlers/base.py”, line 115, in get_response
response = callback(request, *callback_args, **callback_kwargs)
File “./servo/views/device.py”, line 299, in search_gsx
return get_gsx_search_results(request, what, param, query)
File “./servo/views/device.py”, line 219, in get_gsx_search_results
result = Device.from_gsx(query)
File “./servo/models/device.py”, line 156, in from_gsx
raise ValueError(_(”Invalid serial number: %s” % sn))

	[feature] Show KGB SN in shipments/receive form

	[feature] Append text from template chooser instead of replacing

	[bug] Don’t sync POI and SOI SN:s when receiving

	[feature] Creating product that already exists should edit exising product and add new device as product category

	[feature] Upload DB backups

	[feature] shelf codes!

	[feature] Gsx Session manager (check which session ID belongs to what account, add queueing)

	Printing receipts and dispatches

	[feature] Add delivery method to orders

	[bug] Customers with full-caps names with non-ascii chars can only be found wih full caps

	[bug] Cannot remove more than one accessory

	[bug] Cannot create new device from device chooser

	a smarter price calculator

	Add queue to all users when creating queue

	Add Print label button to view bulk return page

	uppercase all serial numbers (including KBB and KGB)

	Show closed GSX repairs as disabled in Order/edit

	[feature] Show average age in every order listing?

	[bug] Cannot handle validation errors in modals?

	How to handle GSX timeouts?

	Should not be able to change part which has been ordered

	Add initiate iOS diagnostics

	Add MRI results for Macs
[bug] WARNING:py.warnings:/data/servo/lib/python2.7/site-packages/django/db/models/fields/init.py:782: RuntimeWarning: DateTimeField received a naive datetime (2013-03-18 00:00:00) while time zone support is active.
RuntimeWarning)

	[feature] Parts library (with checkin/checkout)

	[bug] Cannot browse received parts by date

	[feature] Make layout more responsive (hide search field)

	[bug] Status time deltas should only consider working days.

	[feature] Strip leading S-characters from serial numbers

	adding parts to GSX repairs

	Saveable searches!

	setup wizard

	global login which redirects to the specific app

	logging in as a customer (limiting search results, customers, orders, permissions, etc)

	Create generic print templates for repair confirmation(done) and receipt

	products/outgoing

	products/incoming

	products/invoices

	modals for GSX submits (so that users don’t interrupt the long requests)

	test permissions

	[gsxbug] Using non-serialized SN doesn’t seem to work (”A repair is already open for this unit. GSX does not allow more than one repair to be open for each unit.”)

	[enhancement] Move to using reverse() in get_absolute_url’s

For the next version

	[feature] Add Finnish ZIP code lookup

	shared calendars

	Password resets

	an actually useful troubleshooting tool

Flot Reference

Consider a call to the plot function:

var plot = $.plot(placeholder, data, options)

The placeholder is a jQuery object or DOM element or jQuery expression
that the plot will be put into. This placeholder needs to have its
width and height set as explained in the README (go read that now if
you haven’t, it’s short). The plot will modify some properties of the
placeholder so it’s recommended you simply pass in a div that you
don’t use for anything else. Make sure you check any fancy styling
you apply to the div, e.g. background images have been reported to be a
problem on IE 7.

The plot function can also be used as a jQuery chainable property. This form
naturally can’t return the plot object directly, but you can still access it
via the ‘plot’ data key, like this:

var plot = $("#placeholder").plot(data, options).data("plot");

The format of the data is documented below, as is the available
options. The plot object returned from the call has some methods you
can call. These are documented separately below.

Note that in general Flot gives no guarantees if you change any of the
objects you pass in to the plot function or get out of it since
they’re not necessarily deep-copied.

Data Format

The data is an array of data series:

[series1, series2, ...]

A series can either be raw data or an object with properties. The raw
data format is an array of points:

[[x1, y1], [x2, y2], ...]

E.g.

[[1, 3], [2, 14.01], [3.5, 3.14]]

Note that to simplify the internal logic in Flot both the x and y
values must be numbers (even if specifying time series, see below for
how to do this). This is a common problem because you might retrieve
data from the database and serialize them directly to JSON without
noticing the wrong type. If you’re getting mysterious errors, double
check that you’re inputting numbers and not strings.

If a null is specified as a point or if one of the coordinates is null
or couldn’t be converted to a number, the point is ignored when
drawing. As a special case, a null value for lines is interpreted as a
line segment end, i.e. the points before and after the null value are
not connected.

Lines and points take two coordinates. For filled lines and bars, you
can specify a third coordinate which is the bottom of the filled
area/bar (defaults to 0).

The format of a single series object is as follows:

{
 color: color or number
 data: rawdata
 label: string
 lines: specific lines options
 bars: specific bars options
 points: specific points options
 xaxis: number
 yaxis: number
 clickable: boolean
 hoverable: boolean
 shadowSize: number
 highlightColor: color or number
}

You don’t have to specify any of them except the data, the rest are
options that will get default values. Typically you’d only specify
label and data, like this:

{
 label: "y = 3",
 data: [[0, 3], [10, 3]]
}

The label is used for the legend, if you don’t specify one, the series
will not show up in the legend.

If you don’t specify color, the series will get a color from the
auto-generated colors. The color is either a CSS color specification
(like “rgb(255, 100, 123)”) or an integer that specifies which of
auto-generated colors to select, e.g. 0 will get color no. 0, etc.

The latter is mostly useful if you let the user add and remove series,
in which case you can hard-code the color index to prevent the colors
from jumping around between the series.

The “xaxis” and “yaxis” options specify which axis to use. The axes
are numbered from 1 (default), so { yaxis: 2} means that the series
should be plotted against the second y axis.

“clickable” and “hoverable” can be set to false to disable
interactivity for specific series if interactivity is turned on in
the plot, see below.

The rest of the options are all documented below as they are the same
as the default options passed in via the options parameter in the plot
commmand. When you specify them for a specific data series, they will
override the default options for the plot for that data series.

Here’s a complete example of a simple data specification:

[{ label: "Foo", data: [[10, 1], [17, -14], [30, 5]] },
 { label: "Bar", data: [[11, 13], [19, 11], [30, -7]] }
]

Plot Options

All options are completely optional. They are documented individually
below, to change them you just specify them in an object, e.g.

var options = {
 series: {
 lines: { show: true },
 points: { show: true }
 }
};
	
$.plot(placeholder, data, options);

Customizing the legend

legend: {
 show: boolean
 labelFormatter: null or (fn: string, series object -> string)
 labelBoxBorderColor: color
 noColumns: number
 position: "ne" or "nw" or "se" or "sw"
 margin: number of pixels or [x margin, y margin]
 backgroundColor: null or color
 backgroundOpacity: number between 0 and 1
 container: null or jQuery object/DOM element/jQuery expression
 sorted: null/false, true, "ascending", "descending", "reverse", or a comparator
}

The legend is generated as a table with the data series labels and
small label boxes with the color of the series. If you want to format
the labels in some way, e.g. make them to links, you can pass in a
function for “labelFormatter”. Here’s an example that makes them
clickable:

labelFormatter: function(label, series) {
 // series is the series object for the label
 return '' + label + '';
}

To prevent a series from showing up in the legend, simply have the function
return null.

“noColumns” is the number of columns to divide the legend table into.
“position” specifies the overall placement of the legend within the
plot (top-right, top-left, etc.) and margin the distance to the plot
edge (this can be either a number or an array of two numbers like [x,
y]). “backgroundColor” and “backgroundOpacity” specifies the
background. The default is a partly transparent auto-detected
background.

If you want the legend to appear somewhere else in the DOM, you can
specify “container” as a jQuery object/expression to put the legend
table into. The “position” and “margin” etc. options will then be
ignored. Note that Flot will overwrite the contents of the container.

Legend entries appear in the same order as their series by default. If “sorted”
is “reverse” then they appear in the opposite order from their series. To sort
them alphabetically, you can specify true, “ascending” or “descending”, where
true and “ascending” are equivalent.

You can also provide your own comparator function that accepts two
objects with “label” and “color” properties, and returns zero if they
are equal, a positive value if the first is greater than the second,
and a negative value if the first is less than the second.

sorted: function(a, b) {
 // sort alphabetically in ascending order
 return a.label == b.label ? 0 : (
 a.label > b.label ? 1 : -1
)
}

Customizing the axes

xaxis, yaxis: {
 show: null or true/false
 position: "bottom" or "top" or "left" or "right"
 mode: null or "time" ("time" requires jquery.flot.time.js plugin)
 timezone: null, "browser" or timezone (only makes sense for mode: "time")

 color: null or color spec
 tickColor: null or color spec
 font: null or font spec object

 min: null or number
 max: null or number
 autoscaleMargin: null or number

 transform: null or fn: number -> number
 inverseTransform: null or fn: number -> number

 ticks: null or number or ticks array or (fn: axis -> ticks array)
 tickSize: number or array
 minTickSize: number or array
 tickFormatter: (fn: number, object -> string) or string
 tickDecimals: null or number

 labelWidth: null or number
 labelHeight: null or number
 reserveSpace: null or true

 tickLength: null or number

 alignTicksWithAxis: null or number
}

All axes have the same kind of options. The following describes how to
configure one axis, see below for what to do if you’ve got more than
one x axis or y axis.

If you don’t set the “show” option (i.e. it is null), visibility is
auto-detected, i.e. the axis will show up if there’s data associated
with it. You can override this by setting the “show” option to true or
false.

The “position” option specifies where the axis is placed, bottom or
top for x axes, left or right for y axes. The “mode” option determines
how the data is interpreted, the default of null means as decimal
numbers. Use “time” for time series data; see the time series data
section. The time plugin (jquery.flot.time.js) is required for time
series support.

The “color” option determines the color of the line and ticks for the axis, and
defaults to the grid color with transparency. For more fine-grained control you
can also set the color of the ticks separately with “tickColor”.

You can customize the font and color used to draw the axis tick labels with CSS
or directly via the “font” option. When “font” is null - the default - each
tick label is given the ‘flot-tick-label’ class. For compatibility with Flot
0.7 and earlier the labels are also given the ‘tickLabel’ class, but this is
deprecated and scheduled to be removed with the release of version 1.0.0.

To enable more granular control over styles, labels are divided between a set
of text containers, with each holding the labels for one axis. These containers
are given the classes ‘flot-[x|y]-axis’, and ‘flot-[x|y]#-axis’, where ‘#’ is
the number of the axis when there are multiple axes. For example, the x-axis
labels for a simple plot with only a single x-axis might look like this:

<div class='flot-x-axis flot-x1-axis'>
 <div class='flot-tick-label'>January 2013</div>
 ...
</div>

For direct control over label styles you can also provide “font” as an object
with this format:

{
 size: 11,
 lineHeight: 13,
 style: "italic",
 weight: "bold",
 family: "sans-serif",
 variant: "small-caps",
 color: "#545454"
}

The size and lineHeight must be expressed in pixels; CSS units such as ‘em’
or ‘smaller’ are not allowed.

The options “min”/”max” are the precise minimum/maximum value on the
scale. If you don’t specify either of them, a value will automatically
be chosen based on the minimum/maximum data values. Note that Flot
always examines all the data values you feed to it, even if a
restriction on another axis may make some of them invisible (this
makes interactive use more stable).

The “autoscaleMargin” is a bit esoteric: it’s the fraction of margin
that the scaling algorithm will add to avoid that the outermost points
ends up on the grid border. Note that this margin is only applied when
a min or max value is not explicitly set. If a margin is specified,
the plot will furthermore extend the axis end-point to the nearest
whole tick. The default value is “null” for the x axes and 0.02 for y
axes which seems appropriate for most cases.

“transform” and “inverseTransform” are callbacks you can put in to
change the way the data is drawn. You can design a function to
compress or expand certain parts of the axis non-linearly, e.g.
suppress weekends or compress far away points with a logarithm or some
other means. When Flot draws the plot, each value is first put through
the transform function. Here’s an example, the x axis can be turned
into a natural logarithm axis with the following code:

xaxis: {
 transform: function (v) { return Math.log(v); },
 inverseTransform: function (v) { return Math.exp(v); }
}

Similarly, for reversing the y axis so the values appear in inverse
order:

yaxis: {
 transform: function (v) { return -v; },
 inverseTransform: function (v) { return -v; }
}

Note that for finding extrema, Flot assumes that the transform
function does not reorder values (it should be monotone).

The inverseTransform is simply the inverse of the transform function
(so v == inverseTransform(transform(v)) for all relevant v). It is
required for converting from canvas coordinates to data coordinates,
e.g. for a mouse interaction where a certain pixel is clicked. If you
don’t use any interactive features of Flot, you may not need it.

The rest of the options deal with the ticks.

If you don’t specify any ticks, a tick generator algorithm will make
some for you. The algorithm has two passes. It first estimates how
many ticks would be reasonable and uses this number to compute a nice
round tick interval size. Then it generates the ticks.

You can specify how many ticks the algorithm aims for by setting
“ticks” to a number. The algorithm always tries to generate reasonably
round tick values so even if you ask for three ticks, you might get
five if that fits better with the rounding. If you don’t want any
ticks at all, set “ticks” to 0 or an empty array.

Another option is to skip the rounding part and directly set the tick
interval size with “tickSize”. If you set it to 2, you’ll get ticks at
2, 4, 6, etc. Alternatively, you can specify that you just don’t want
ticks at a size less than a specific tick size with “minTickSize”.
Note that for time series, the format is an array like [2, “month”],
see the next section.

If you want to completely override the tick algorithm, you can specify
an array for “ticks”, either like this:

ticks: [0, 1.2, 2.4]

Or like this where the labels are also customized:

ticks: [[0, "zero"], [1.2, "one mark"], [2.4, "two marks"]]

You can mix the two if you like.

For extra flexibility you can specify a function as the “ticks”
parameter. The function will be called with an object with the axis
min and max and should return a ticks array. Here’s a simplistic tick
generator that spits out intervals of pi, suitable for use on the x
axis for trigonometric functions:

function piTickGenerator(axis) {
 var res = [], i = Math.floor(axis.min / Math.PI);
 do {
 var v = i * Math.PI;
 res.push([v, i + "\u03c0"]);
 ++i;
 } while (v < axis.max);
 return res;
}

You can control how the ticks look like with “tickDecimals”, the
number of decimals to display (default is auto-detected).

Alternatively, for ultimate control over how ticks are formatted you can
provide a function to “tickFormatter”. The function is passed two
parameters, the tick value and an axis object with information, and
should return a string. The default formatter looks like this:

function formatter(val, axis) {
 return val.toFixed(axis.tickDecimals);
}

The axis object has “min” and “max” with the range of the axis,
“tickDecimals” with the number of decimals to round the value to and
“tickSize” with the size of the interval between ticks as calculated
by the automatic axis scaling algorithm (or specified by you). Here’s
an example of a custom formatter:

function suffixFormatter(val, axis) {
 if (val > 1000000)
 return (val / 1000000).toFixed(axis.tickDecimals) + " MB";
 else if (val > 1000)
 return (val / 1000).toFixed(axis.tickDecimals) + " kB";
 else
 return val.toFixed(axis.tickDecimals) + " B";
}

“labelWidth” and “labelHeight” specifies a fixed size of the tick
labels in pixels. They’re useful in case you need to align several
plots. “reserveSpace” means that even if an axis isn’t shown, Flot
should reserve space for it - it is useful in combination with
labelWidth and labelHeight for aligning multi-axis charts.

“tickLength” is the length of the tick lines in pixels. By default, the
innermost axes will have ticks that extend all across the plot, while
any extra axes use small ticks. A value of null means use the default,
while a number means small ticks of that length - set it to 0 to hide
the lines completely.

If you set “alignTicksWithAxis” to the number of another axis, e.g.
alignTicksWithAxis: 1, Flot will ensure that the autogenerated ticks
of this axis are aligned with the ticks of the other axis. This may
improve the looks, e.g. if you have one y axis to the left and one to
the right, because the grid lines will then match the ticks in both
ends. The trade-off is that the forced ticks won’t necessarily be at
natural places.

Multiple axes

If you need more than one x axis or y axis, you need to specify for
each data series which axis they are to use, as described under the
format of the data series, e.g. { data: […], yaxis: 2 } specifies
that a series should be plotted against the second y axis.

To actually configure that axis, you can’t use the xaxis/yaxis options
directly - instead there are two arrays in the options:

xaxes: []
yaxes: []

Here’s an example of configuring a single x axis and two y axes (we
can leave options of the first y axis empty as the defaults are fine):

{
 xaxes: [{ position: "top" }],
 yaxes: [{ }, { position: "right", min: 20 }]
}

The arrays get their default values from the xaxis/yaxis settings, so
say you want to have all y axes start at zero, you can simply specify
yaxis: { min: 0 } instead of adding a min parameter to all the axes.

Generally, the various interfaces in Flot dealing with data points
either accept an xaxis/yaxis parameter to specify which axis number to
use (starting from 1), or lets you specify the coordinate directly as
x2/x3/… or x2axis/x3axis/… instead of “x” or “xaxis”.

Time series data

Please note that it is now required to include the time plugin,
jquery.flot.time.js, for time series support.

Time series are a bit more difficult than scalar data because
calendars don’t follow a simple base 10 system. For many cases, Flot
abstracts most of this away, but it can still be a bit difficult to
get the data into Flot. So we’ll first discuss the data format.

The time series support in Flot is based on Javascript timestamps,
i.e. everywhere a time value is expected or handed over, a Javascript
timestamp number is used. This is a number, not a Date object. A
Javascript timestamp is the number of milliseconds since January 1,
1970 00:00:00 UTC. This is almost the same as Unix timestamps, except it’s
in milliseconds, so remember to multiply by 1000!

You can see a timestamp like this

alert((new Date()).getTime())

There are different schools of thought when it comes to diplay of
timestamps. Many will want the timestamps to be displayed according to
a certain time zone, usually the time zone in which the data has been
produced. Some want the localized experience, where the timestamps are
displayed according to the local time of the visitor. Flot supports
both. Optionally you can include a third-party library to get
additional timezone support.

Default behavior is that Flot always displays timestamps according to
UTC. The reason being that the core Javascript Date object does not
support other fixed time zones. Often your data is at another time
zone, so it may take a little bit of tweaking to work around this
limitation.

The easiest way to think about it is to pretend that the data
production time zone is UTC, even if it isn’t. So if you have a
datapoint at 2002-02-20 08:00, you can generate a timestamp for eight
o’clock UTC even if it really happened eight o’clock UTC+0200.

In PHP you can get an appropriate timestamp with:

strtotime("2002-02-20 UTC") * 1000

In Python you can get it with something like:

calendar.timegm(datetime_object.timetuple()) * 1000

In .NET you can get it with something like:

public static int GetJavascriptTimestamp(System.DateTime input)
{
 System.TimeSpan span = new System.TimeSpan(System.DateTime.Parse("1/1/1970").Ticks);
 System.DateTime time = input.Subtract(span);
 return (long)(time.Ticks / 10000);
}

Javascript also has some support for parsing date strings, so it is
possible to generate the timestamps manually client-side.

If you’ve already got the real UTC timestamp, it’s too late to use the
pretend trick described above. But you can fix up the timestamps by
adding the time zone offset, e.g. for UTC+0200 you would add 2 hours
to the UTC timestamp you got. Then it’ll look right on the plot. Most
programming environments have some means of getting the timezone
offset for a specific date (note that you need to get the offset for
each individual timestamp to account for daylight savings).

The alternative with core Javascript is to interpret the timestamps
according to the time zone that the visitor is in, which means that
the ticks will shift with the time zone and daylight savings of each
visitor. This behavior is enabled by setting the axis option
“timezone” to the value “browser”.

If you need more time zone functionality than this, there is still
another option. If you include the “timezone-js” library
https://github.com/mde/timezone-js in the page and set axis.timezone
to a value recognized by said library, Flot will use timezone-js to
interpret the timestamps according to that time zone.

Once you’ve gotten the timestamps into the data and specified “time”
as the axis mode, Flot will automatically generate relevant ticks and
format them. As always, you can tweak the ticks via the “ticks” option

	just remember that the values should be timestamps (numbers), not
Date objects.

Tick generation and formatting can also be controlled separately
through the following axis options:

minTickSize: array
timeformat: null or format string
monthNames: null or array of size 12 of strings
dayNames: null or array of size 7 of strings
twelveHourClock: boolean

Here “timeformat” is a format string to use. You might use it like
this:

xaxis: {
 mode: "time",
 timeformat: "%Y/%m/%d"
}

This will result in tick labels like “2000/12/24”. A subset of the
standard strftime specifiers are supported (plus the nonstandard %q):

%a: weekday name (customizable)
%b: month name (customizable)
%d: day of month, zero-padded (01-31)
%e: day of month, space-padded (1-31)
%H: hours, 24-hour time, zero-padded (00-23)
%I: hours, 12-hour time, zero-padded (01-12)
%m: month, zero-padded (01-12)
%M: minutes, zero-padded (00-59)
%q: quarter (1-4)
%S: seconds, zero-padded (00-59)
%y: year (two digits)
%Y: year (four digits)
%p: am/pm
%P: AM/PM (uppercase version of %p)
%w: weekday as number (0-6, 0 being Sunday)

Flot 0.8 switched from %h to the standard %H hours specifier. The %h specifier
is still available, for backwards-compatibility, but is deprecated and
scheduled to be removed permanently with the release of version 1.0.

You can customize the month names with the “monthNames” option. For
instance, for Danish you might specify:

monthNames: ["jan", "feb", "mar", "apr", "maj", "jun", "jul", "aug", "sep", "okt", "nov", "dec"]

Similarly you can customize the weekday names with the “dayNames”
option. An example in French:

dayNames: ["dim", "lun", "mar", "mer", "jeu", "ven", "sam"]

If you set “twelveHourClock” to true, the autogenerated timestamps
will use 12 hour AM/PM timestamps instead of 24 hour. This only
applies if you have not set “timeformat”. Use the “%I” and “%p” or
“%P” options if you want to build your own format string with 12-hour
times.

If the Date object has a strftime property (and it is a function), it
will be used instead of the built-in formatter. Thus you can include
a strftime library such as http://hacks.bluesmoon.info/strftime/ for
more powerful date/time formatting.

If everything else fails, you can control the formatting by specifying
a custom tick formatter function as usual. Here’s a simple example
which will format December 24 as 24/12:

tickFormatter: function (val, axis) {
 var d = new Date(val);
 return d.getUTCDate() + "/" + (d.getUTCMonth() + 1);
}

Note that for the time mode “tickSize” and “minTickSize” are a bit
special in that they are arrays on the form “[value, unit]” where unit
is one of “second”, “minute”, “hour”, “day”, “month” and “year”. So
you can specify

minTickSize: [1, "month"]

to get a tick interval size of at least 1 month and correspondingly,
if axis.tickSize is [2, “day”] in the tick formatter, the ticks have
been produced with two days in-between.

Customizing the data series

series: {
 lines, points, bars: {
 show: boolean
 lineWidth: number
 fill: boolean or number
 fillColor: null or color/gradient
 }

 lines, bars: {
 zero: boolean
 }

 points: {
 radius: number
 symbol: "circle" or function
 }

 bars: {
 barWidth: number
 align: "left", "right" or "center"
 horizontal: boolean
 }

 lines: {
 steps: boolean
 }

 shadowSize: number
 highlightColor: color or number
}

colors: [color1, color2, ...]

The options inside “series: {}” are copied to each of the series. So
you can specify that all series should have bars by putting it in the
global options, or override it for individual series by specifying
bars in a particular the series object in the array of data.

The most important options are “lines”, “points” and “bars” that
specify whether and how lines, points and bars should be shown for
each data series. In case you don’t specify anything at all, Flot will
default to showing lines (you can turn this off with
lines: { show: false }). You can specify the various types
independently of each other, and Flot will happily draw each of them
in turn (this is probably only useful for lines and points), e.g.

var options = {
 series: {
 lines: { show: true, fill: true, fillColor: "rgba(255, 255, 255, 0.8)" },
 points: { show: true, fill: false }
 }
};

“lineWidth” is the thickness of the line or outline in pixels. You can
set it to 0 to prevent a line or outline from being drawn; this will
also hide the shadow.

“fill” is whether the shape should be filled. For lines, this produces
area graphs. You can use “fillColor” to specify the color of the fill.
If “fillColor” evaluates to false (default for everything except
points which are filled with white), the fill color is auto-set to the
color of the data series. You can adjust the opacity of the fill by
setting fill to a number between 0 (fully transparent) and 1 (fully
opaque).

For bars, fillColor can be a gradient, see the gradient documentation
below. “barWidth” is the width of the bars in units of the x axis (or
the y axis if “horizontal” is true), contrary to most other measures
that are specified in pixels. For instance, for time series the unit
is milliseconds so 24 * 60 * 60 * 1000 produces bars with the width of
a day. “align” specifies whether a bar should be left-aligned
(default), right-aligned or centered on top of the value it represents.
When “horizontal” is on, the bars are drawn horizontally, i.e. from the
y axis instead of the x axis; note that the bar end points are still
defined in the same way so you’ll probably want to swap the
coordinates if you’ve been plotting vertical bars first.

Area and bar charts normally start from zero, regardless of the data’s range.
This is because they convey information through size, and starting from a
different value would distort their meaning. In cases where the fill is purely
for decorative purposes, however, “zero” allows you to override this behavior.
It defaults to true for filled lines and bars; setting it to false tells the
series to use the same automatic scaling as an un-filled line.

For lines, “steps” specifies whether two adjacent data points are
connected with a straight (possibly diagonal) line or with first a
horizontal and then a vertical line. Note that this transforms the
data by adding extra points.

For points, you can specify the radius and the symbol. The only
built-in symbol type is circles, for other types you can use a plugin
or define them yourself by specifying a callback:

function cross(ctx, x, y, radius, shadow) {
 var size = radius * Math.sqrt(Math.PI) / 2;
 ctx.moveTo(x - size, y - size);
 ctx.lineTo(x + size, y + size);
 ctx.moveTo(x - size, y + size);
 ctx.lineTo(x + size, y - size);
}

The parameters are the drawing context, x and y coordinates of the
center of the point, a radius which corresponds to what the circle
would have used and whether the call is to draw a shadow (due to
limited canvas support, shadows are currently faked through extra
draws). It’s good practice to ensure that the area covered by the
symbol is the same as for the circle with the given radius, this
ensures that all symbols have approximately the same visual weight.

“shadowSize” is the default size of shadows in pixels. Set it to 0 to
remove shadows.

“highlightColor” is the default color of the translucent overlay used
to highlight the series when the mouse hovers over it.

The “colors” array specifies a default color theme to get colors for
the data series from. You can specify as many colors as you like, like
this:

colors: ["#d18b2c", "#dba255", "#919733"]

If there are more data series than colors, Flot will try to generate
extra colors by lightening and darkening colors in the theme.

Customizing the grid

grid: {
 show: boolean
 aboveData: boolean
 color: color
 backgroundColor: color/gradient or null
 margin: number or margin object
 labelMargin: number
 axisMargin: number
 markings: array of markings or (fn: axes -> array of markings)
 borderWidth: number or object with "top", "right", "bottom" and "left" properties with different widths
 borderColor: color or null or object with "top", "right", "bottom" and "left" properties with different colors
 minBorderMargin: number or null
 clickable: boolean
 hoverable: boolean
 autoHighlight: boolean
 mouseActiveRadius: number
}

interaction: {
 redrawOverlayInterval: number or -1
}

The grid is the thing with the axes and a number of ticks. Many of the
things in the grid are configured under the individual axes, but not
all. “color” is the color of the grid itself whereas “backgroundColor”
specifies the background color inside the grid area, here null means
that the background is transparent. You can also set a gradient, see
the gradient documentation below.

You can turn off the whole grid including tick labels by setting
“show” to false. “aboveData” determines whether the grid is drawn
above the data or below (below is default).

“margin” is the space in pixels between the canvas edge and the grid,
which can be either a number or an object with individual margins for
each side, in the form:

margin: {
 top: top margin in pixels
 left: left margin in pixels
 bottom: bottom margin in pixels
 right: right margin in pixels
}

“labelMargin” is the space in pixels between tick labels and axis
line, and “axisMargin” is the space in pixels between axes when there
are two next to each other.

“borderWidth” is the width of the border around the plot. Set it to 0
to disable the border. Set it to an object with “top”, “right”,
“bottom” and “left” properties to use different widths. You can
also set “borderColor” if you want the border to have a different color
than the grid lines. Set it to an object with “top”, “right”, “bottom”
and “left” properties to use different colors. “minBorderMargin” controls
the default minimum margin around the border - it’s used to make sure
that points aren’t accidentally clipped by the canvas edge so by default
the value is computed from the point radius.

“markings” is used to draw simple lines and rectangular areas in the
background of the plot. You can either specify an array of ranges on
the form { xaxis: { from, to }, yaxis: { from, to } } (with multiple
axes, you can specify coordinates for other axes instead, e.g. as
x2axis/x3axis/…) or with a function that returns such an array given
the axes for the plot in an object as the first parameter.

You can set the color of markings by specifying “color” in the ranges
object. Here’s an example array:

markings: [{ xaxis: { from: 0, to: 2 }, yaxis: { from: 10, to: 10 }, color: "#bb0000" }, ...]

If you leave out one of the values, that value is assumed to go to the
border of the plot. So for example if you only specify { xaxis: {
from: 0, to: 2 } } it means an area that extends from the top to the
bottom of the plot in the x range 0-2.

A line is drawn if from and to are the same, e.g.

markings: [{ yaxis: { from: 1, to: 1 } }, ...]

would draw a line parallel to the x axis at y = 1. You can control the
line width with “lineWidth” in the range object.

An example function that makes vertical stripes might look like this:

markings: function (axes) {
 var markings = [];
 for (var x = Math.floor(axes.xaxis.min); x < axes.xaxis.max; x += 2)
 markings.push({ xaxis: { from: x, to: x + 1 } });
 return markings;
}

If you set “clickable” to true, the plot will listen for click events
on the plot area and fire a “plotclick” event on the placeholder with
a position and a nearby data item object as parameters. The coordinates
are available both in the unit of the axes (not in pixels) and in
global screen coordinates.

Likewise, if you set “hoverable” to true, the plot will listen for
mouse move events on the plot area and fire a “plothover” event with
the same parameters as the “plotclick” event. If “autoHighlight” is
true (the default), nearby data items are highlighted automatically.
If needed, you can disable highlighting and control it yourself with
the highlight/unhighlight plot methods described elsewhere.

You can use “plotclick” and “plothover” events like this:

$.plot($("#placeholder"), [d], { grid: { clickable: true } });

$("#placeholder").bind("plotclick", function (event, pos, item) {
 alert("You clicked at " + pos.x + ", " + pos.y);
 // axis coordinates for other axes, if present, are in pos.x2, pos.x3, ...
 // if you need global screen coordinates, they are pos.pageX, pos.pageY

 if (item) {
 highlight(item.series, item.datapoint);
 alert("You clicked a point!");
 }
});

The item object in this example is either null or a nearby object on the form:

item: {
 datapoint: the point, e.g. [0, 2]
 dataIndex: the index of the point in the data array
 series: the series object
 seriesIndex: the index of the series
 pageX, pageY: the global screen coordinates of the point
}

For instance, if you have specified the data like this

$.plot($("#placeholder"), [{ label: "Foo", data: [[0, 10], [7, 3]] }], ...);

and the mouse is near the point (7, 3), “datapoint” is [7, 3],
“dataIndex” will be 1, “series” is a normalized series object with
among other things the “Foo” label in series.label and the color in
series.color, and “seriesIndex” is 0. Note that plugins and options
that transform the data can shift the indexes from what you specified
in the original data array.

If you use the above events to update some other information and want
to clear out that info in case the mouse goes away, you’ll probably
also need to listen to “mouseout” events on the placeholder div.

“mouseActiveRadius” specifies how far the mouse can be from an item
and still activate it. If there are two or more points within this
radius, Flot chooses the closest item. For bars, the top-most bar
(from the latest specified data series) is chosen.

If you want to disable interactivity for a specific data series, you
can set “hoverable” and “clickable” to false in the options for that
series, like this:

{ data: [...], label: "Foo", clickable: false }

“redrawOverlayInterval” specifies the maximum time to delay a redraw
of interactive things (this works as a rate limiting device). The
default is capped to 60 frames per second. You can set it to -1 to
disable the rate limiting.

Specifying gradients

A gradient is specified like this:

{ colors: [color1, color2, ...] }

For instance, you might specify a background on the grid going from
black to gray like this:

grid: {
 backgroundColor: { colors: ["#000", "#999"] }
}

For the series you can specify the gradient as an object that
specifies the scaling of the brightness and the opacity of the series
color, e.g.

{ colors: [{ opacity: 0.8 }, { brightness: 0.6, opacity: 0.8 }] }

where the first color simply has its alpha scaled, whereas the second
is also darkened. For instance, for bars the following makes the bars
gradually disappear, without outline:

bars: {
 show: true,
 lineWidth: 0,
 fill: true,
 fillColor: { colors: [{ opacity: 0.8 }, { opacity: 0.1 }] }
}

Flot currently only supports vertical gradients drawn from top to
bottom because that’s what works with IE.

Plot Methods

The Plot object returned from the plot function has some methods you
can call:

	highlight(series, datapoint)

Highlight a specific datapoint in the data series. You can either
specify the actual objects, e.g. if you got them from a
“plotclick” event, or you can specify the indices, e.g.
highlight(1, 3) to highlight the fourth point in the second series
(remember, zero-based indexing).

	unhighlight(series, datapoint) or unhighlight()

Remove the highlighting of the point, same parameters as
highlight.

If you call unhighlight with no parameters, e.g. as
plot.unhighlight(), all current highlights are removed.

	setData(data)

You can use this to reset the data used. Note that axis scaling,
ticks, legend etc. will not be recomputed (use setupGrid() to do
that). You’ll probably want to call draw() afterwards.

You can use this function to speed up redrawing a small plot if
you know that the axes won’t change. Put in the new data with
setData(newdata), call draw(), and you’re good to go. Note that
for large datasets, almost all the time is consumed in draw()
plotting the data so in this case don’t bother.

	setupGrid()

Recalculate and set axis scaling, ticks, legend etc.

Note that because of the drawing model of the canvas, this
function will immediately redraw (actually reinsert in the DOM)
the labels and the legend, but not the actual tick lines because
they’re drawn on the canvas. You need to call draw() to get the
canvas redrawn.

	draw()

Redraws the plot canvas.

	triggerRedrawOverlay()

Schedules an update of an overlay canvas used for drawing
interactive things like a selection and point highlights. This
is mostly useful for writing plugins. The redraw doesn’t happen
immediately, instead a timer is set to catch multiple successive
redraws (e.g. from a mousemove). You can get to the overlay by
setting up a drawOverlay hook.

	width()/height()

Gets the width and height of the plotting area inside the grid.
This is smaller than the canvas or placeholder dimensions as some
extra space is needed (e.g. for labels).

	offset()

Returns the offset of the plotting area inside the grid relative
to the document, useful for instance for calculating mouse
positions (event.pageX/Y minus this offset is the pixel position
inside the plot).

	pointOffset({ x: xpos, y: ypos })

Returns the calculated offset of the data point at (x, y) in data
space within the placeholder div. If you are working with multiple
axes, you can specify the x and y axis references, e.g.

 o = pointOffset({ x: xpos, y: ypos, xaxis: 2, yaxis: 3 })
 // o.left and o.top now contains the offset within the div

	resize()

Tells Flot to resize the drawing canvas to the size of the
placeholder. You need to run setupGrid() and draw() afterwards as
canvas resizing is a destructive operation. This is used
internally by the resize plugin.

	shutdown()

Cleans up any event handlers Flot has currently registered. This
is used internally.

There are also some members that let you peek inside the internal
workings of Flot which is useful in some cases. Note that if you change
something in the objects returned, you’re changing the objects used by
Flot to keep track of its state, so be careful.

	getData()

Returns an array of the data series currently used in normalized
form with missing settings filled in according to the global
options. So for instance to find out what color Flot has assigned
to the data series, you could do this:

var series = plot.getData();
for (var i = 0; i < series.length; ++i)
 alert(series[i].color);

A notable other interesting field besides color is datapoints
which has a field “points” with the normalized data points in a
flat array (the field “pointsize” is the increment in the flat
array to get to the next point so for a dataset consisting only of
(x,y) pairs it would be 2).

	getAxes()

Gets an object with the axes. The axes are returned as the
attributes of the object, so for instance getAxes().xaxis is the
x axis.

Various things are stuffed inside an axis object, e.g. you could
use getAxes().xaxis.ticks to find out what the ticks are for the
xaxis. Two other useful attributes are p2c and c2p, functions for
transforming from data point space to the canvas plot space and
back. Both returns values that are offset with the plot offset.
Check the Flot source code for the complete set of attributes (or
output an axis with console.log() and inspect it).

With multiple axes, the extra axes are returned as x2axis, x3axis,
etc., e.g. getAxes().y2axis is the second y axis. You can check
y2axis.used to see whether the axis is associated with any data
points and y2axis.show to see if it is currently shown.

	getPlaceholder()

Returns placeholder that the plot was put into. This can be useful
for plugins for adding DOM elements or firing events.

	getCanvas()

Returns the canvas used for drawing in case you need to hack on it
yourself. You’ll probably need to get the plot offset too.

	getPlotOffset()

Gets the offset that the grid has within the canvas as an object
with distances from the canvas edges as “left”, “right”, “top”,
“bottom”. I.e., if you draw a circle on the canvas with the center
placed at (left, top), its center will be at the top-most, left
corner of the grid.

	getOptions()

Gets the options for the plot, normalized, with default values
filled in. You get a reference to actual values used by Flot, so
if you modify the values in here, Flot will use the new values.
If you change something, you probably have to call draw() or
setupGrid() or triggerRedrawOverlay() to see the change.

Hooks

In addition to the public methods, the Plot object also has some hooks
that can be used to modify the plotting process. You can install a
callback function at various points in the process, the function then
gets access to the internal data structures in Flot.

Here’s an overview of the phases Flot goes through:

	Plugin initialization, parsing options

	Constructing the canvases used for drawing

	Set data: parsing data specification, calculating colors,
copying raw data points into internal format,
normalizing them, finding max/min for axis auto-scaling

	Grid setup: calculating axis spacing, ticks, inserting tick
labels, the legend

	Draw: drawing the grid, drawing each of the series in turn

	Setting up event handling for interactive features

	Responding to events, if any

	Shutdown: this mostly happens in case a plot is overwritten

Each hook is simply a function which is put in the appropriate array.
You can add them through the “hooks” option, and they are also available
after the plot is constructed as the “hooks” attribute on the returned
plot object, e.g.

 // define a simple draw hook
 function hellohook(plot, canvascontext) { alert("hello!"); };

 // pass it in, in an array since we might want to specify several
 var plot = $.plot(placeholder, data, { hooks: { draw: [hellohook] } });

 // we can now find it again in plot.hooks.draw[0] unless a plugin
 // has added other hooks

The available hooks are described below. All hook callbacks get the
plot object as first parameter. You can find some examples of defined
hooks in the plugins bundled with Flot.

	processOptions [phase 1]

function(plot, options)

Called after Flot has parsed and merged options. Useful in the
instance where customizations beyond simple merging of default
values is needed. A plugin might use it to detect that it has been
enabled and then turn on or off other options.

	processRawData [phase 3]

function(plot, series, data, datapoints)

Called before Flot copies and normalizes the raw data for the given
series. If the function fills in datapoints.points with normalized
points and sets datapoints.pointsize to the size of the points,
Flot will skip the copying/normalization step for this series.

In any case, you might be interested in setting datapoints.format,
an array of objects for specifying how a point is normalized and
how it interferes with axis scaling. It accepts the following options:

{
 x, y: boolean,
 number: boolean,
 required: boolean,
 defaultValue: value,
 autoscale: boolean
}

“x” and “y” specify whether the value is plotted against the x or y axis,
and is currently used only to calculate axis min-max ranges. The default
format array, for example, looks like this:

[
 { x: true, number: true, required: true },
 { y: true, number: true, required: true }
]

This indicates that a point, i.e. [0, 25], consists of two values, with the
first being plotted on the x axis and the second on the y axis.

If “number” is true, then the value must be numeric, and is set to null if
it cannot be converted to a number.

“defaultValue” provides a fallback in case the original value is null. This
is for instance handy for bars, where one can omit the third coordinate
(the bottom of the bar), which then defaults to zero.

If “required” is true, then the value must exist (be non-null) for the
point as a whole to be valid. If no value is provided, then the entire
point is cleared out with nulls, turning it into a gap in the series.

“autoscale” determines whether the value is considered when calculating an
automatic min-max range for the axes that the value is plotted against.

	processDatapoints [phase 3]

function(plot, series, datapoints)

Called after normalization of the given series but before finding
min/max of the data points. This hook is useful for implementing data
transformations. “datapoints” contains the normalized data points in
a flat array as datapoints.points with the size of a single point
given in datapoints.pointsize. Here’s a simple transform that
multiplies all y coordinates by 2:

function multiply(plot, series, datapoints) {
 var points = datapoints.points, ps = datapoints.pointsize;
 for (var i = 0; i < points.length; i += ps)
 points[i + 1] *= 2;
}

Note that you must leave datapoints in a good condition as Flot
doesn’t check it or do any normalization on it afterwards.

	processOffset [phase 4]

function(plot, offset)

Called after Flot has initialized the plot’s offset, but before it
draws any axes or plot elements. This hook is useful for customizing
the margins between the grid and the edge of the canvas. “offset” is
an object with attributes “top”, “bottom”, “left” and “right”,
corresponding to the margins on the four sides of the plot.

	drawBackground [phase 5]

function(plot, canvascontext)

Called before all other drawing operations. Used to draw backgrounds
or other custom elements before the plot or axes have been drawn.

	drawSeries [phase 5]

function(plot, canvascontext, series)

Hook for custom drawing of a single series. Called just before the
standard drawing routine has been called in the loop that draws
each series.

	draw [phase 5]

function(plot, canvascontext)

Hook for drawing on the canvas. Called after the grid is drawn
(unless it’s disabled or grid.aboveData is set) and the series have
been plotted (in case any points, lines or bars have been turned
on). For examples of how to draw things, look at the source code.

	bindEvents [phase 6]

function(plot, eventHolder)

Called after Flot has setup its event handlers. Should set any
necessary event handlers on eventHolder, a jQuery object with the
canvas, e.g.

function (plot, eventHolder) {
 eventHolder.mousedown(function (e) {
 alert("You pressed the mouse at " + e.pageX + " " + e.pageY);
 });
}

Interesting events include click, mousemove, mouseup/down. You can
use all jQuery events. Usually, the event handlers will update the
state by drawing something (add a drawOverlay hook and call
triggerRedrawOverlay) or firing an externally visible event for
user code. See the crosshair plugin for an example.

Currently, eventHolder actually contains both the static canvas
used for the plot itself and the overlay canvas used for
interactive features because some versions of IE get the stacking
order wrong. The hook only gets one event, though (either for the
overlay or for the static canvas).

Note that custom plot events generated by Flot are not generated on
eventHolder, but on the div placeholder supplied as the first
argument to the plot call. You can get that with
plot.getPlaceholder() - that’s probably also the one you should use
if you need to fire a custom event.

	drawOverlay [phase 7]

function (plot, canvascontext)

The drawOverlay hook is used for interactive things that need a
canvas to draw on. The model currently used by Flot works the way
that an extra overlay canvas is positioned on top of the static
canvas. This overlay is cleared and then completely redrawn
whenever something interesting happens. This hook is called when
the overlay canvas is to be redrawn.

“canvascontext” is the 2D context of the overlay canvas. You can
use this to draw things. You’ll most likely need some of the
metrics computed by Flot, e.g. plot.width()/plot.height(). See the
crosshair plugin for an example.

	shutdown [phase 8]

function (plot, eventHolder)

Run when plot.shutdown() is called, which usually only happens in
case a plot is overwritten by a new plot. If you’re writing a
plugin that adds extra DOM elements or event handlers, you should
add a callback to clean up after you. Take a look at the section in
PLUGINS.txt for more info.

Plugins

Plugins extend the functionality of Flot. To use a plugin, simply
include its Javascript file after Flot in the HTML page.

If you’re worried about download size/latency, you can concatenate all
the plugins you use, and Flot itself for that matter, into one big file
(make sure you get the order right), then optionally run it through a
Javascript minifier such as YUI Compressor.

Here’s a brief explanation of how the plugin plumbings work:

Each plugin registers itself in the global array $.plot.plugins. When
you make a new plot object with $.plot, Flot goes through this array
calling the “init” function of each plugin and merging default options
from the “option” attribute of the plugin. The init function gets a
reference to the plot object created and uses this to register hooks
and add new public methods if needed.

See the PLUGINS.txt file for details on how to write a plugin. As the
above description hints, it’s actually pretty easy.

Version number

The version number of Flot is available in $.plot.version.

Contributing to Flot

We welcome all contributions, but following these guidelines results in less
work for us, and a faster and better response.

Issues

Issues are not a way to ask general questions about Flot. If you see unexpected
behavior but are not 100% certain that it is a bug, please try posting to the
forum [http://groups.google.com/group/flot-graphs] first, and confirm that
what you see is really a Flot problem before creating a new issue for it.

When reporting a bug, please include a working demonstration of the problem, if
possible, or at least a clear description of the options you’re using and the
environment (browser and version, jQuery version, other libraries) that you’re
running under.

If you have suggestions for new features, or changes to existing ones, we’d
love to hear them! Please submit each suggestion as a separate new issue.

If you would like to work on an existing issue, please make sure it is not
already assigned to someone else. If an issue is assigned to someone, that
person has already started working on it. So, pick unassigned issues to prevent
duplicated efforts.

Pull Requests

To make merging as easy as possible, please keep these rules in mind:

	Divide larger changes into a series of small, logical commits with
descriptive messages.

	Format your code according to the style guidelines below.

	Submit new features or architectural changes to the -work branch
for the next major release. Submit bug fixes to the master branch.

 Frequently asked questions

Frequently asked questions

How much data can Flot cope with?

Flot will happily draw everything you send to it so the answer
depends on the browser. The excanvas emulation used for IE (built with
VML) makes IE by far the slowest browser so be sure to test with that
if IE users are in your target group (for large plots in IE, you can
also check out Flashcanvas which may be faster).

1000 points is not a problem, but as soon as you start having more
points than the pixel width, you should probably start thinking about
downsampling/aggregation as this is near the resolution limit of the
chart anyway. If you downsample server-side, you also save bandwidth.

Flot isn’t working when I’m using JSON data as source!

Actually, Flot loves JSON data, you just got the format wrong.
Double check that you’re not inputting strings instead of numbers,
like [[”0”, “-2.13”], [”5”, “4.3”]]. This is most common mistake, and
the error might not show up immediately because Javascript can do some
conversion automatically.

Can I export the graph?

You can grab the image rendered by the canvas element used by Flot
as a PNG or JPEG (remember to set a background). Note that it won’t
include anything not drawn in the canvas (such as the legend). And it
doesn’t work with excanvas which uses VML, but you could try
Flashcanvas.

The bars are all tiny in time mode?

It’s not really possible to determine the bar width automatically.
So you have to set the width with the barWidth option which is NOT in
pixels, but in the units of the x axis (or the y axis for horizontal
bars). For time mode that’s milliseconds so the default value of 1
makes the bars 1 millisecond wide.

Can I use Flot with libraries like Mootools or Prototype?

Yes, Flot supports it out of the box and it’s easy! Just use jQuery
instead of $, e.g. call jQuery.plot instead of $.plot and use
jQuery(something) instead of $(something). As a convenience, you can
put in a DOM element for the graph placeholder where the examples and
the API documentation are using jQuery objects.

Depending on how you include jQuery, you may have to add one line of
code to prevent jQuery from overwriting functions from the other
libraries, see the documentation in jQuery (”Using jQuery with other
libraries”) for details.

Flot doesn’t work with [insert name of Javascript UI framework]!

Flot is using standard HTML to make charts. If this is not working,
it’s probably because the framework you’re using is doing something
weird with the DOM or with the CSS that is interfering with Flot.

A common problem is that there’s display:none on a container until the
user does something. Many tab widgets work this way, and there’s
nothing wrong with it - you just can’t call Flot inside a display:none
container as explained in the README so you need to hold off the Flot
call until the container is actually displayed (or use
visibility:hidden instead of display:none or move the container
off-screen).

If you find there’s a specific thing we can do to Flot to help, feel
free to submit a bug report. Otherwise, you’re welcome to ask for help
on the forum/mailing list, but please don’t submit a bug report to
Flot.

 Flot 0.8.1

Flot 0.8.1

Bug fixes

	Fixed a regression in the time plugin, introduced in 0.8, that caused dates
to align to the minute rather than to the highest appropriate unit. This
caused many x-axes in 0.8 to have different ticks than they did in 0.7.
(reported by Tom Sheppard, patch by Daniel Shapiro, issue #1017, pull
request #1023)

	Fixed a regression in text rendering, introduced in 0.8, that caused axis
labels with the same text as another label on the same axis to disappear.
More generally, it’s again possible to have the same text in two locations.
(issue #1032)

	Fixed a regression in text rendering, introduced in 0.8, where axis labels
were no longer assigned an explicit width, and their text could not wrap.
(reported by sabregreen, issue #1019)

	Fixed a regression in the pie plugin, introduced in 0.8, that prevented it
from accepting data in the format ‘[[x, y]]’.
(patch by Nicolas Morel, pull request #1024)

	The ‘zero’ series option and ‘autoscale’ format option are no longer
ignored when the series contains a null value.
(reported by Daniel Shapiro, issue #1033)

	Avoid triggering the time-mode plugin exception when there are zero series.
(reported by Daniel Rothig, patch by Mark Raymond, issue #1016)

	When a custom color palette has fewer colors than the default palette, Flot
no longer fills out the colors with the remainder of the default.
(patch by goorpy, issue #1031, pull request #1034)

	Fixed missing update for bar highlights after a zoom or other redraw.
(reported by Paolo Valleri, issue #1030)

	Fixed compatibility with jQuery versions earlier than 1.7.
(patch by Lee Willis, issue #1027, pull request #1027)

	The mouse wheel no longer scrolls the page when using the navigate plugin.
(patch by vird, pull request #1020)

	Fixed missing semicolons in the core library.
(reported by Michal Zglinski)

Flot 0.8.0

API changes

Support for time series has been moved into a plugin, jquery.flot.time.js.
This results in less code if time series are not used. The functionality
remains the same (plus timezone support, as described below); however, the
plugin must be included if axis.mode is set to “time”.

When the axis mode is “time”, the axis option “timezone” can be set to null,
“browser”, or a particular timezone (e.g. “America/New_York”) to control how
the dates are displayed. If null, the dates are displayed as UTC. If
“browser”, the dates are displayed in the time zone of the user’s browser.

Date/time formatting has changed and now follows a proper subset of the
standard strftime specifiers, plus one nonstandard specifier for quarters.
Additionally, if a strftime function is found in the Date object’s prototype,
it will be used instead of the built-in formatter.

Axis tick labels now use the class ‘flot-tick-label’ instead of ‘tickLabel’.
The text containers for each axis now use the classes ‘flot-[x|y]-axis’ and
‘flot-[x|y]#-axis’ instead of ‘[x|y]Axis’ and ‘[x|y]#Axis’. For compatibility
with Flot 0.7 and earlier text will continue to use the old classes as well,
but they are considered deprecated and will be removed in a future version.

In previous versions the axis ‘color’ option was used to set the color of tick
marks and their label text. It now controls the color of the axis line, which
previously could not be changed separately, and continues to act as a default
for the tick-mark color. The color of tick label text is now set either by
overriding the ‘flot-tick-label’ CSS rule or via the axis ‘font’ option.

A new plugin, jquery.flot.canvas.js, allows axis tick labels to be rendered
directly to the canvas, rather than using HTML elements. This feature can be
toggled with a simple option, making it easy to create interactive plots in the
browser using HTML, then re-render them to canvas for export as an image.

The plugin tries to remain as faithful as possible to the original HTML render,
and goes so far as to automatically extract styles from CSS, to avoid having to
provide a separate set of styles when rendering to canvas. Due to limitations
of the canvas text API, the plugin cannot reproduce certain features, including
HTML markup embedded in labels, and advanced text styles such as ‘em’ units.

The plugin requires support for canvas text, which may not be present in some
older browsers, even if they support the canvas tag itself. To use the plugin
with these browsers try using a shim such as canvas-text or FlashCanvas.

The base and overlay canvas are now using the CSS classes “flot-base” and
“flot-overlay” to prevent accidental clashes (issue 540).

Changes

	Addition of nonstandard %q specifier to date/time formatting. (patch
by risicle, issue 49)

	Date/time formatting follows proper subset of strftime specifiers, and
support added for Date.prototype.strftime, if found. (patch by Mark Cote,
issues 419 and 558)

	Fixed display of year ticks. (patch by Mark Cote, issue 195)

	Support for time series moved to plugin. (patch by Mark Cote)

	Display time series in different time zones. (patch by Knut Forkalsrud,
issue 141)

	Added a canvas plugin to enable rendering axis tick labels to the canvas.
(sponsored by YCharts.com, implementation by Ole Laursen and David Schnur)

	Support for setting the interval between redraws of the overlay canvas with
redrawOverlayInterval. (suggested in issue 185)

	Support for multiple thresholds in thresholds plugin. (patch by Arnaud
Bellec, issue 523)

	Support for plotting categories/textual data directly with new categories
plugin.

	Tick generators now get the whole axis rather than just min/max.

	Added processOffset and drawBackground hooks. (suggested in issue 639)

	Added a grid “margin” option to set the space between the canvas edge and
the grid.

	Prevent the pie example page from generating single-slice pies. (patch by
Shane Reustle)

	In addition to “left” and “center”, bars now recognize “right” as an
alignment option. (patch by Michael Mayer, issue 520)

	Switched from toFixed to a much faster default tickFormatter. (patch by
Clemens Stolle)

	Added to a more helpful error when using a time-mode axis without including
the flot.time plugin. (patch by Yael Elmatad)

	Added a legend “sorted” option to control sorting of legend entries
independent of their series order. (patch by Tom Cleaveland)

	Added a series “highlightColor” option to control the color of the
translucent overlay that identifies the dataset when the mouse hovers over
it. (patch by Eric Wendelin and Nate Abele, issues 168 and 299)

	Added a plugin jquery.flot.errorbars, with an accompanying example, that
adds the ability to plot error bars, commonly used in many kinds of
statistical data visualizations. (patch by Rui Pereira, issue 215)

	The legend now omits entries whose labelFormatter returns null. (patch by
Tom Cleaveland, Christopher Lambert, and Simon Strandgaard)

	Added support for high pixel density (retina) displays, resulting in much
crisper charts on such devices. (patch by Olivier Guerriat, additional
fixes by Julien Thomas, maimairel, and Lau Bech Lauritzen)

	Added the ability to control pie shadow position and alpha via a new pie
‘shadow’ option. (patch by Julien Thomas, pull request #78)

	Added the ability to set width and color for individual sides of the grid.
(patch by Ara Anjargolian, additional fixes by Karl Swedberg, pull requests #855
and #880)

	The selection plugin’s getSelection now returns null when the selection
has been cleared. (patch by Nick Campbell, pull request #852)

	Added a new option called ‘zero’ to bars and filled lines series, to control
whether the y-axis minimum is scaled to fit the data or set to zero.
(patch by David Schnur, issues #316, #529, and #856, pull request #911)

	The plot function is now also a jQuery chainable property.
(patch by David Schnur, issues #734 and #816, pull request #953)

	When only a single pie slice is beneath the combine threshold it is no longer
replaced by an ‘other’ slice. (suggested by Devin Bayer, issue #638)

	Added lineJoin and minSize options to the selection plugin to control the
corner style and minimum size of the selection, respectively.
(patch by Ruth Linehan, pull request #963)

Bug fixes

	Fix problem with null values and pie plugin. (patch by gcruxifix,
issue 500)

	Fix problem with threshold plugin and bars. (based on patch by
kaarlenkaski, issue 348)

	Fix axis box calculations so the boxes include the outermost part of the
labels too.

	Fix problem with event clicking and hovering in IE 8 by updating Excanvas
and removing previous work-around. (test case by Ara Anjargolian)

	Fix issues with blurry 1px border when some measures aren’t integer.
(reported by Ara Anjargolian)

	Fix bug with formats in the data processor. (reported by Peter Hull,
issue 534)

	Prevent i from being declared global in extractRange. (reported by
Alexander Obukhov, issue 627)

	Throw errors in a more cross-browser-compatible manner. (patch by
Eddie Kay)

	Prevent pie slice outlines from being drawn when the stroke width is zero.
(reported by Chris Minett, issue 585)

	Updated the navigate plugin’s inline copy of jquery.mousewheel to fix
Webkit zoom problems. (reported by Hau Nguyen, issue 685)

	Axis labels no longer appear as decimals rather than integers in certain
cases. (patch by Clemens Stolle, issue 541)

	Automatic color generation no longer produces only whites and blacks when
there are many series. (patch by David Schnur and Tom Cleaveland)

	Fixed an error when custom tick labels weren’t provided as strings. (patch
by Shad Downey)

	Prevented the local insertSteps and fmt variables from becoming global.
(first reported by Marc Bennewitz and Szymon Barglowski, patch by Nick
Campbell, issues #825 and #831, pull request #851)

	Prevented several threshold plugin variables from becoming global. (patch
by Lasse Dahl Ebert)

	Fixed various jQuery 1.8 compatibility issues. (issues #814 and #819,
pull request #877)

	Pie charts with a slice equal to or approaching 100% of the pie no longer
appear invisible. (patch by David Schnur, issues #444, #658, #726, #824
and #850, pull request #879)

	Prevented several local variables from becoming global. (patch by aaa707)

	Ensure that the overlay and primary canvases remain aligned. (issue #670,
pull request #901)

	Added support for jQuery 1.9 by removing and replacing uses of $.browser.
(analysis and patch by Anthony Ryan, pull request #905)

	Pie charts no longer disappear when redrawn during a resize or update.
(reported by Julien Bec, issue #656, pull request #910)

	Avoided floating-point precision errors when calculating pie percentages.
(patch by James Ward, pull request #918)

	Fixed compatibility with jQuery 1.2.6, which has no ‘mouseleave’ shortcut.
(reported by Bevan, original pull request #920, replaced by direct patch)

	Fixed sub-pixel rendering issues with crosshair and selection lines.
(patches by alanayoub and Daniel Shapiro, pull requests #17 and #925)

	Fixed rendering issues when using the threshold plugin with several series.
(patch by Ivan Novikov, pull request #934)

	Pie charts no longer disappear when redrawn after calling setData().
(reported by zengge1984 and pareeohnos, issues #810 and #945)

	Added a work-around for the problem where points with a lineWidth of zero
still showed up with a visible line. (reported by SalvoSav, issue #842,
patch by Jamie Hamel-Smith, pull request #937)

	Pie charts now accept values in string form, like other plot types.
(reported by laerdal.no, issue #534)

	Avoid rounding errors in the threshold plugin.
(reported by jerikojerk, issue #895)

	Fixed an error when using the navigate plugin with jQuery 1.9.x or later.
(reported by Paolo Valleri, issue #964)

	Fixed inconsistencies between the highlight and unhighlight functions.
(reported by djamshed, issue #987)

	Fixed recalculation of tickSize and tickDecimals on calls to setupGrid.
(patch by thecountofzero, pull request #861, issues #860, #1000)

Flot 0.7

API changes

Multiple axes support. Code using dual axes should be changed from using
x2axis/y2axis in the options to using an array (although backwards-
compatibility hooks are in place). For instance,

{
 xaxis: { ... }, x2axis: { ... },
 yaxis: { ... }, y2axis: { ... }
}

becomes

{
 xaxes: [{ ... }, { ... }],
 yaxes: [{ ... }, { ... }]
}

Note that if you’re just using one axis, continue to use the xaxis/yaxis
directly (it now sets the default settings for the arrays). Plugins touching
the axes must be ported to take the extra axes into account, check the source
to see some examples.

A related change is that the visibility of axes is now auto-detected. So if
you were relying on an axis to show up even without any data in the chart, you
now need to set the axis “show” option explicitly.

“tickColor” on the grid options is now deprecated in favour of a corresponding
option on the axes, so:

{ grid: { tickColor: "#000" }}

becomes

{ xaxis: { tickColor: "#000"}, yaxis: { tickColor: "#000"} }

But if you just configure a base color Flot will now autogenerate a tick color
by adding transparency. Backwards-compatibility hooks are in place.

Final note: now that IE 9 is coming out with canvas support, you may want to
adapt the excanvas include to skip loading it in IE 9 (the examples have been
adapted thanks to Ryley Breiddal). An alternative to excanvas using Flash has
also surfaced, if your graphs are slow in IE, you may want to give it a spin:

http://code.google.com/p/flashcanvas/

Changes

	Support for specifying a bottom for each point for line charts when filling
them, this means that an arbitrary bottom can be used instead of just the x
axis. (based on patches patiently provided by Roman V. Prikhodchenko)

	New fillbetween plugin that can compute a bottom for a series from another
series, useful for filling areas between lines.

See new example percentiles.html for a use case.

	More predictable handling of gaps for the stacking plugin, now all
undefined ranges are skipped.

	Stacking plugin can stack horizontal bar charts.

	Navigate plugin now redraws the plot while panning instead of only after
the fact. (raised by lastthemy, issue 235)

Can be disabled by setting the pan.frameRate option to null.

	Date formatter now accepts %0m and %0d to get a zero-padded month or day.
(issue raised by Maximillian Dornseif)

	Revamped internals to support an unlimited number of axes, not just dual.
(sponsored by Flight Data Services, www.flightdataservices.com)

	New setting on axes, “tickLength”, to control the size of ticks or turn
them off without turning off the labels.

	Axis labels are now put in container divs with classes, for instance labels
in the x axes can be reached via “.xAxis .tickLabel”.

	Support for setting the color of an axis. (sponsored by Flight Data
Services, www.flightdataservices.com)

	Tick color is now auto-generated as the base color with some transparency,
unless you override it.

	Support for aligning ticks in the axes with “alignTicksWithAxis” to ensure
that they appear next to each other rather than in between, at the expense
of possibly awkward tick steps. (sponsored by Flight Data Services,
www.flightdataservices.com)

	Support for customizing the point type through a callback when plotting
points and new symbol plugin with some predefined point types. (sponsored
by Utility Data Corporation)

	Resize plugin for automatically redrawing when the placeholder changes
size, e.g. on window resizes. (sponsored by Novus Partners)

A resize() method has been added to plot object facilitate this.

	Support Infinity/-Infinity for plotting asymptotes by hacking it into
+/-Number.MAX_VALUE. (reported by rabaea.mircea)

	Support for restricting navigate plugin to not pan/zoom an axis. (based on
patch by kkaefer)

	Support for providing the drag cursor for the navigate plugin as an option.
(based on patch by Kelly T. Moore)

	Options for controlling whether an axis is shown or not (suggestion by Timo
Tuominen) and whether to reserve space for it even if it isn’t shown.

	New attribute $.plot.version with the Flot version as a string.

	The version comment is now included in the minified jquery.flot.min.js.

	New options.grid.minBorderMargin for adjusting the minimum margin provided
around the border (based on patch by corani, issue 188).

	Refactor replot behaviour so Flot tries to reuse the existing canvas,
adding shutdown() methods to the plot. (based on patch by Ryley Breiddal,
issue 269)

This prevents a memory leak in Chrome and hopefully makes replotting faster
for those who are using $.plot instead of .setData()/.draw(). Also update
jQuery to 1.5.1 to prevent IE leaks fixed in jQuery.

	New real-time line chart example.

	New hooks: drawSeries, shutdown.

Bug fixes

	Fixed problem with findNearbyItem and bars on top of each other. (reported
by ragingchikn, issue 242)

	Fixed problem with ticks and the border. (based on patch from
ultimatehustler69, issue 236)

	Fixed problem with plugins adding options to the series objects.

	Fixed a problem introduced in 0.6 with specifying a gradient with:

{brightness: x, opacity: y }

	Don’t use $.browser.msie, check for getContext on the created canvas element
instead and try to use excanvas if it’s not found.

Fixes IE 9 compatibility.

	highlight(s, index) was looking up the point in the original s.data instead
of in the computed datapoints array, which breaks with plugins that modify
the datapoints, such as the stacking plugin. (reported by curlypaul924,
issue 316)

	More robust handling of axis from data passed in from getData(). (reported)
by Morgan)

	Fixed problem with turning off bar outline. (fix by Jordi Castells,
issue 253)

	Check the selection passed into setSelection in the selection
plugin, to guard against errors when synchronizing plots (fix by Lau
Bech Lauritzen).

	Fix bug in crosshair code with mouseout resetting the crosshair even
if it is locked (fix by Lau Bech Lauritzen and Banko Adam).

	Fix bug with points plotting using line width from lines rather than
points.

	Fix bug with passing non-array 0 data (for plugins that don’t expect
arrays, patch by vpapp1).

	Fix errors in JSON in examples so they work with jQuery 1.4.2
(fix reported by honestbleeps, issue 357).

	Fix bug with tooltip in interacting.html, this makes the tooltip
much smoother (fix by bdkahn). Fix related bug inside highlighting
handler in Flot.

	Use closure trick to make inline colorhelpers plugin respect
jQuery.noConflict(true), renaming the global jQuery object (reported
by Nick Stielau).

	Listen for mouseleave events and fire a plothover event with empty
item when it occurs to drop highlights when the mouse leaves the
plot (reported by by outspirit).

	Fix bug with using aboveData with a background (reported by
amitayd).

	Fix possible excanvas leak (report and suggested fix by tom9729).

	Fix bug with backwards compatibility for shadowSize = 0 (report and
suggested fix by aspinak).

	Adapt examples to skip loading excanvas (fix by Ryley Breiddal).

	Fix bug that prevent a simple f(x) = -x transform from working
correctly (fix by Mike, issue 263).

	Fix bug in restoring cursor in navigate plugin (reported by Matteo
Gattanini, issue 395).

	Fix bug in picking items when transform/inverseTransform is in use
(reported by Ofri Raviv, and patches and analysis by Jan and Tom
Paton, issue 334 and 467).

	Fix problem with unaligned ticks and hover/click events caused by
padding on the placeholder by hardcoding the placeholder padding to
0 (reported by adityadineshsaxena, Matt Sommer, Daniel Atos and some
other people, issue 301).

	Update colorhelpers plugin to avoid dying when trying to parse an
invalid string (reported by cadavor, issue 483).

Flot 0.6

API changes

Selection support has been moved to a plugin. Thus if you’re passing
selection: { mode: something }, you MUST include the file
jquery.flot.selection.js after jquery.flot.js. This reduces the size of
base Flot and makes it easier to customize the selection as well as
improving code clarity. The change is based on a patch from andershol.

In the global options specified in the $.plot command, “lines”, “points”,
“bars” and “shadowSize” have been moved to a sub-object called “series”:

$.plot(placeholder, data, { lines: { show: true }})

should be changed to

 $.plot(placeholder, data, { series: { lines: { show: true }}})

All future series-specific options will go into this sub-object to
simplify plugin writing. Backward-compatibility code is in place, so
old code should not break.

“plothover” no longer provides the original data point, but instead a
normalized one, since there may be no corresponding original point.

Due to a bug in previous versions of jQuery, you now need at least
jQuery 1.2.6. But if you can, try jQuery 1.3.2 as it got some improvements
in event handling speed.

Changes

	Added support for disabling interactivity for specific data series.
(request from Ronald Schouten and Steve Upton)

	Flot now calls $() on the placeholder and optional legend container passed
in so you can specify DOM elements or CSS expressions to make it easier to
use Flot with libraries like Prototype or Mootools or through raw JSON from
Ajax responses.

	A new “plotselecting” event is now emitted while the user is making a
selection.

	The “plothover” event is now emitted immediately instead of at most 10
times per second, you’ll have to put in a setTimeout yourself if you’re
doing something really expensive on this event.

	The built-in date formatter can now be accessed as $.plot.formatDate(…)
(suggestion by Matt Manela) and even replaced.

	Added “borderColor” option to the grid. (patches from Amaury Chamayou and
Mike R. Williamson)

	Added support for gradient backgrounds for the grid. (based on patch from
Amaury Chamayou, issue 90)

The “setting options” example provides a demonstration.

	Gradient bars. (suggestion by stefpet)

	Added a “plotunselected” event which is triggered when the selection is
removed, see “selection” example. (suggestion by Meda Ugo)

	The option legend.margin can now specify horizontal and vertical margins
independently. (suggestion by someone who’s annoyed)

	Data passed into Flot is now copied to a new canonical format to enable
further processing before it hits the drawing routines. As a side-effect,
this should make Flot more robust in the face of bad data. (issue 112)

	Step-wise charting: line charts have a new option “steps” that when set to
true connects the points with horizontal/vertical steps instead of diagonal
lines.

	The legend labelFormatter now passes the series in addition to just the
label. (suggestion by Vincent Lemeltier)

	Horizontal bars (based on patch by Jason LeBrun).

	Support for partial bars by specifying a third coordinate, i.e. they don’t
have to start from the axis. This can be used to make stacked bars.

	New option to disable the (grid.show).

	Added pointOffset method for converting a point in data space to an offset
within the placeholder.

	Plugin system: register an init method in the $.flot.plugins array to get
started, see PLUGINS.txt for details on how to write plugins (it’s easy).
There are also some extra methods to enable access to internal state.

	Hooks: you can register functions that are called while Flot is crunching
the data and doing the plot. This can be used to modify Flot without
changing the source, useful for writing plugins. Some hooks are defined,
more are likely to come.

	Threshold plugin: you can set a threshold and a color, and the data points
below that threshold will then get the color. Useful for marking data
below 0, for instance.

	Stack plugin: you can specify a stack key for each series to have them
summed. This is useful for drawing additive/cumulative graphs with bars and
(currently unfilled) lines.

	Crosshairs plugin: trace the mouse position on the axes, enable with
crosshair: { mode: “x”} (see the new tracking example for a use).

	Image plugin: plot prerendered images.

	Navigation plugin for panning and zooming a plot.

	More configurable grid.

	Axis transformation support, useful for non-linear plots, e.g. log axes and
compressed time axes (like omitting weekends).

	Support for twelve-hour date formatting (patch by Forrest Aldridge).

	The color parsing code in Flot has been cleaned up and split out so it’s
now available as a separate jQuery plugin. It’s included inline in the Flot
source to make dependency managing easier. This also makes it really easy
to use the color helpers in Flot plugins.

Bug fixes

	Fixed two corner-case bugs when drawing filled curves. (report and analysis
by Joshua Varner)

	Fix auto-adjustment code when setting min to 0 for an axis where the
dataset is completely flat on that axis. (report by chovy)

	Fixed a bug with passing in data from getData to setData when the secondary
axes are used. (reported by nperelman, issue 65)

	Fixed so that it is possible to turn lines off when no other chart type is
shown (based on problem reported by Glenn Vanderburg), and fixed so that
setting lineWidth to 0 also hides the shadow. (based on problem reported by
Sergio Nunes)

	Updated mousemove position expression to the latest from jQuery. (reported
by meyuchas)

	Use CSS borders instead of background in legend. (issues 25 and 45)

	Explicitly convert axis min/max to numbers.

	Fixed a bug with drawing marking lines with different colors. (reported by
Khurram)

	Fixed a bug with returning y2 values in the selection event. (fix by
exists, issue 75)

	Only set position relative on placeholder if it hasn’t already a position
different from static. (reported by kyberneticist, issue 95)

	Don’t round markings to prevent sub-pixel problems. (reported by
Dan Lipsitt)

	Make the grid border act similarly to a regular CSS border, i.e. prevent
it from overlapping the plot itself. This also fixes a problem with anti-
aliasing when the width is 1 pixel. (reported by Anthony Ettinger)

	Imported version 3 of excanvas and fixed two issues with the newer version.
Hopefully, this will make Flot work with IE8. (nudge by Fabien Menager,
further analysis by Booink, issue 133)

	Changed the shadow code for lines to hopefully look a bit better with
vertical lines.

	Round tick positions to avoid possible problems with fractions. (suggestion
by Fred, issue 130)

	Made the heuristic for determining how many ticks to aim for a bit smarter.

	Fix for uneven axis margins (report and patch by Paul Kienzle) and snapping
to ticks. (report and patch by lifthrasiir)

	Fixed bug with slicing in findNearbyItems. (patch by zollman)

	Make heuristic for x axis label widths more dynamic. (patch by
rickinhethuis)

	Make sure points on top take precedence when finding nearby points when
hovering. (reported by didroe, issue 224)

Flot 0.5

Timestamps are now in UTC. Also “selected” event -> becomes “plotselected”
with new data, the parameters for setSelection are now different (but
backwards compatibility hooks are in place), coloredAreas becomes markings
with a new interface (but backwards compatibility hooks are in place).

API changes

Timestamps in time mode are now displayed according to UTC instead of the time
zone of the visitor. This affects the way the timestamps should be input;
you’ll probably have to offset the timestamps according to your local time
zone. It also affects any custom date handling code (which basically now
should use the equivalent UTC date mehods, e.g. .setUTCMonth() instead of
.setMonth().

Markings, previously coloredAreas, are now specified as ranges on the axes,
like { xaxis: { from: 0, to: 10 }}. Furthermore with markings you can
now draw horizontal/vertical lines by setting from and to to the same
coordinate. (idea from line support patch by by Ryan Funduk)

Interactivity: added a new “plothover” event and this and the “plotclick”
event now returns the closest data item (based on patch by /david, patch by
Mark Byers for bar support). See the revamped “interacting with the data”
example for some hints on what you can do.

Highlighting: you can now highlight points and datapoints are autohighlighted
when you hover over them (if hovering is turned on).

Support for dual axis has been added (based on patch by someone who’s annoyed
and /david). For each data series you can specify which axes it belongs to,
and there are two more axes, x2axis and y2axis, to customize. This affects the
“selected” event which has been renamed to “plotselected” and spews out
{ xaxis: { from: -10, to: 20 } ... }, setSelection in which the
parameters are on a new form (backwards compatible hooks are in place so old
code shouldn’t break) and markings (formerly coloredAreas).

Changes

	Added support for specifying the size of tick labels (axis.labelWidth,
axis.labelHeight). Useful for specifying a max label size to keep multiple
plots aligned.

	The “fill” option can now be a number that specifies the opacity of the
fill.

	You can now specify a coordinate as null (like [2, null]) and Flot will
take the other coordinate into account when scaling the axes. (based on
patch by joebno)

	New option for bars “align”. Set it to “center” to center the bars on the
value they represent.

	setSelection now takes a second parameter which you can use to prevent the
method from firing the “plotselected” handler.

	Improved the handling of axis auto-scaling with bars.

Bug fixes

	Fixed a bug in calculating spacing around the plot. (reported by
timothytoe)

	Fixed a bug in finding max values for all-negative data sets.

	Prevent the possibility of eternal looping in tick calculations.

	Fixed a bug when borderWidth is set to 0. (reported by Rob/sanchothefat)

	Fixed a bug with drawing bars extending below 0. (reported by James Hewitt,
patch by Ryan Funduk).

	Fixed a bug with line widths of bars. (reported by MikeM)

	Fixed a bug with ‘nw’ and ‘sw’ legend positions.

	Fixed a bug with multi-line x-axis tick labels. (reported by Luca Ciano,
IE-fix help by Savage Zhang)

	Using the “container” option in legend now overwrites the container element
instead of just appending to it, fixing the infinite legend bug. (reported
by several people, fix by Brad Dewey)

Flot 0.4

API changes

Deprecated axis.noTicks in favor of just specifying the number as axis.ticks.
So xaxis: { noTicks: 10 } becomes xaxis: { ticks: 10 }.

Time series support. Specify axis.mode: “time”, put in Javascript timestamps
as data, and Flot will automatically spit out sensible ticks. Take a look at
the two new examples. The format can be customized with axis.timeformat and
axis.monthNames, or if that fails with axis.tickFormatter.

Support for colored background areas via grid.coloredAreas. Specify an array
of { x1, y1, x2, y2 } objects or a function that returns these given
{ xmin, xmax, ymin, ymax }.

More members on the plot object (report by Chris Davies and others).
“getData” for inspecting the assigned settings on data series (e.g. color) and
“setData”, “setupGrid” and “draw” for updating the contents without a total
replot.

The default number of ticks to aim for is now dependent on the size of the
plot in pixels. Support for customizing tick interval sizes directly with
axis.minTickSize and axis.tickSize.

Cleaned up the automatic axis scaling algorithm and fixed how it interacts
with ticks. Also fixed a couple of tick-related corner case bugs (one reported
by mainstreetmark, another reported by timothytoe).

The option axis.tickFormatter now takes a function with two parameters, the
second parameter is an optional object with information about the axis. It has
min, max, tickDecimals, tickSize.

Changes

	Added support for segmented lines. (based on patch from Michael MacDonald)

	Added support for ignoring null and bad values. (suggestion from Nick
Konidaris and joshwaihi)

	Added support for changing the border width. (thanks to joebno and safoo)

	Label colors can be changed via CSS by selecting the tickLabel class.

Bug fixes

	Fixed a bug in handling single-item bar series. (reported by Emil Filipov)

	Fixed erratic behaviour when interacting with the plot with IE 7. (reported
by Lau Bech Lauritzen).

	Prevent IE/Safari text selection when selecting stuff on the canvas.

Flot 0.3

This is mostly a quick-fix release because jquery.js wasn’t included in the
previous zip/tarball.

Changes

	Include jquery.js in the zip/tarball.

	Support clicking on the plot. Turn it on with grid: { clickable: true },
then you get a “plotclick” event on the graph placeholder with the position
in units of the plot.

Bug fixes

	Fixed a bug in dealing with data where min = max. (thanks to Michael
Messinides)

Flot 0.2

The API should now be fully documented.

API changes

Moved labelMargin option to grid from x/yaxis.

Changes

	Added support for putting a background behind the default legend. The
default is the partly transparent background color. Added backgroundColor
and backgroundOpacity to the legend options to control this.

	The ticks options can now be a callback function that takes one parameter,
an object with the attributes min and max. The function should return a
ticks array.

	Added labelFormatter option in legend, useful for turning the legend
labels into links.

	Reduced the size of the code. (patch by Guy Fraser)

Flot 0.1

First public release.

 Writing plugins

Writing plugins

All you need to do to make a new plugin is creating an init function
and a set of options (if needed), stuffing it into an object and
putting it in the $.plot.plugins array. For example:

function myCoolPluginInit(plot) {
 plot.coolstring = "Hello!";
};

$.plot.plugins.push({ init: myCoolPluginInit, options: { ... } });

// if $.plot is called, it will return a plot object with the
// attribute "coolstring"

Now, given that the plugin might run in many different places, it’s
a good idea to avoid leaking names. The usual trick here is wrap the
above lines in an anonymous function which is called immediately, like
this: (function () { inner code … })(). To make it even more robust
in case $ is not bound to jQuery but some other Javascript library, we
can write it as

(function ($) {
 // plugin definition
 // ...
})(jQuery);

There’s a complete example below, but you should also check out the
plugins bundled with Flot.

Complete example

Here is a simple debug plugin which alerts each of the series in the
plot. It has a single option that control whether it is enabled and
how much info to output:

(function ($) {
 function init(plot) {
 var debugLevel = 1;

 function checkDebugEnabled(plot, options) {
 if (options.debug) {
 debugLevel = options.debug;
 plot.hooks.processDatapoints.push(alertSeries);
 }
 }

 function alertSeries(plot, series, datapoints) {
 var msg = "series " + series.label;
 if (debugLevel > 1) {
 msg += " with " + series.data.length + " points";
 alert(msg);
 }
 }

 plot.hooks.processOptions.push(checkDebugEnabled);
 }

 var options = { debug: 0 };

 $.plot.plugins.push({
 init: init,
 options: options,
 name: "simpledebug",
 version: "0.1"
 });
})(jQuery);

We also define “name” and “version”. It’s not used by Flot, but might
be helpful for other plugins in resolving dependencies.

Put the above in a file named “jquery.flot.debug.js”, include it in an
HTML page and then it can be used with:

 $.plot($("#placeholder"), [...], { debug: 2 });

This simple plugin illustrates a couple of points:

	It uses the anonymous function trick to avoid name pollution.

	It can be enabled/disabled through an option.

	Variables in the init function can be used to store plot-specific
state between the hooks.

The two last points are important because there may be multiple plots
on the same page, and you’d want to make sure they are not mixed up.

Shutting down a plugin

Each plot object has a shutdown hook which is run when plot.shutdown()
is called. This usually mostly happens in case another plot is made on
top of an existing one.

The purpose of the hook is to give you a chance to unbind any event
handlers you’ve registered and remove any extra DOM things you’ve
inserted.

The problem with event handlers is that you can have registered a
handler which is run in some point in the future, e.g. with
setTimeout(). Meanwhile, the plot may have been shutdown and removed,
but because your event handler is still referencing it, it can’t be
garbage collected yet, and worse, if your handler eventually runs, it
may overwrite stuff on a completely different plot.

Some hints on the options

Plugins should always support appropriate options to enable/disable
them because the plugin user may have several plots on the same page
where only one should use the plugin. In most cases it’s probably a
good idea if the plugin is turned off rather than on per default, just
like most of the powerful features in Flot.

If the plugin needs options that are specific to each series, like the
points or lines options in core Flot, you can put them in “series” in
the options object, e.g.

var options = {
 series: {
 downsample: {
 algorithm: null,
 maxpoints: 1000
 }
 }
}

Then they will be copied by Flot into each series, providing default
values in case none are specified.

Think hard and long about naming the options. These names are going to
be public API, and code is going to depend on them if the plugin is
successful.

 Flot

Flot [image: ../../../../_images/flot.png]Build status [https://travis-ci.org/flot/flot]

About

Flot is a Javascript plotting library for jQuery.Read more at the website: http://www.flotcharts.org/

Take a look at the the examples in examples/index.html; they should give a good
impression of what Flot can do, and the source code of the examples is probably
the fastest way to learn how to use Flot.

Installation

Just include the Javascript file after you’ve included jQuery.

Generally, all browsers that support the HTML5 canvas tag are
supported.

For support for Internet Explorer < 9, you can use Excanvas [http://code.google.com/p/explorercanvas/]
excanvas [http://code.google.com/p/explorercanvas/], a canvas emulator; this is used in the examples bundled
with Flot. You just include the excanvas script like this:

<!--[if lte IE 8]><script language="javascript" type="text/javascript" src="excanvas.min.js"></script><![endif]-->

If it’s not working on your development IE 6.0, check that it has
support for VML which Excanvas is relying on. It appears that some
stripped down versions used for test environments on virtual machines
lack the VML support.

You can also try using Flashcanvas [http://code.google.com/p/flashcanvas/], which uses Flash to
do the emulation. Although Flash can be a bit slower to load than VML,
if you’ve got a lot of points, the Flash version can be much faster
overall. Flot contains some wrapper code for activating Excanvas which
Flashcanvas is compatible with.

You need at least jQuery 1.2.6, but try at least 1.3.2 for interactive
charts because of performance improvements in event handling.

Basic usage

Create a placeholder div to put the graph in:

<div id="placeholder"></div>

You need to set the width and height of this div, otherwise the plot
library doesn’t know how to scale the graph. You can do it inline like
this:

<div id="placeholder" style="width:600px;height:300px"></div>

You can also do it with an external stylesheet. Make sure that the
placeholder isn’t within something with a display:none CSS property -
in that case, Flot has trouble measuring label dimensions which
results in garbled looks and might have trouble measuring the
placeholder dimensions which is fatal (it’ll throw an exception).

Then when the div is ready in the DOM, which is usually on document
ready, run the plot function:

$.plot($("#placeholder"), data, options);

Here, data is an array of data series and options is an object with
settings if you want to customize the plot. Take a look at the
examples for some ideas of what to put in or look at the
API reference. Here’s a quick example that’ll draw a line
from (0, 0) to (1, 1):

$.plot($("#placeholder"), [[[0, 0], [1, 1]]], { yaxis: { max: 1 } });

The plot function immediately draws the chart and then returns a plot
object with a couple of methods.

What’s with the name?

First: it’s pronounced with a short o, like “plot”. Not like “flawed”.

So “Flot” rhymes with “plot”.

And if you look up “flot” in a Danish-to-English dictionary, some of
the words that come up are “good-looking”, “attractive”, “stylish”,
“smart”, “impressive”, “extravagant”. One of the main goals with Flot
is pretty looks.

Notes about the examples

In order to have a useful, functional example of time-series plots using time
zones, date.js from timezone-js [https://github.com/mde/timezone-js] (released under the Apache 2.0
license) and the Olson [ftp://ftp.iana.org/tz/] time zone database (released to the public
domain) have been included in the examples directory. They are used in
examples/axes-time-zones/index.html.

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/order1.png
000 Orter 14012351 | oy Appicsed | Sero
22)[4 seeoree

(O]

Quace B ouu

cose 0 comy

@ Order 14012351 | Johnny Appleseed

an— o-

prosedusop iMac (27-inch, Mid 2011)

psti vt
Waranty Sttt Wy 0t Goveag8)
Purchase Dot 05022011 Swech
Soramoer DGRFLIBION

pr—

Contration NAG 272.70C/2X2 G TRLETTOM

Vourus | ety | Vo o | [0 17

+ Aga oo

opace

Fipp Lopanan a minute sg0 i

Computer s osn g s

_static/ajax-loader.gif

_images/flot.png
“build passing

_images/inventory.png
[NON] i 2 @ localhost (@] (4]] ul I

% Inventory a Search
+ New Product ~ o~ D A~ J
Filter results Q
Products Shipments Purchase Orders Invoices
CATEGORIES Product Stock Price Exchange Price In Stock
All
. fa— ZD661-03027 kr0.00 kr3,999.00 0 s~
Services Not .
Availabie iPhone 6s Plus
Hard drives
SSD - ZD661-03026 kr0.00 kr3,999.00 0 2 |~
HDD 2,5" iPhone 6s Plus
HDD 3,5"
. fa— ZD661-03025 kr0.00 kr3,999.00 0 s~
Service packages Not .
Availabie iPhone 6s Plus
Memory
Computers image ZD661-03024 kr0.00 kr3,999.00 0 s~
APP Aviale iPhone 6s Plus
Accessories
fa— 661-03015 kr0.00 kr3,999.00 0 s~
halabi iPhone 6s Plus
fa— 661-03014 kr0.00 kr3,999.00 0 s~
halabi iPhone 6s Plus
fa— 661-03013 kr0.00 kr3,999.00 0 s~
halabi iPhone 6s Plus
fa— 661-03012 kr0.00 kr3,999.00 0 s~
halabi iPhone 6s Plus
fa— ZD661-03114 kr0.00 kr3,999.00 0 s -

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/devices.png
